
1

Covert Communication Exploiting Android Signing Schemes

Android-SigMorph

2

3

whois

Ayan Saha

Security Researcher
@ Ex-Keysight

Loves to play with Android, CTFs

Cat lover!

Achute Sharma

Technical Lead Security
@ Keysight

Loves everything security !

4

Without breaking the signature How can we misuse the Signing Schemes
of Android, to allow for additional data in the APK file format.

Android-SigMorph

5

Android App Repackaging

6

Android App Repackaging

Decompile
an APK

Modify the
code

Rebuild the
APK

Sign it with
custom

certificate

Release the
Modified

APK

7

Repackaging an APK

Basically, re-packaging can cause lots of detection
signals to go off.

8

Without repackaging or breaking the signed information of an APK

What and How much can we change….

Decompile
an APK

Modify the
APK Binary

Compile the
APK

Sign it with
custom

certificate

Release the
Modified

APK

9

Android Signing Schemes

V1
• From Inception of

Android
• Jar Signing

Scheme

V2
• Android v7.0
• Introduces Signing

Block

V3
• Android v9.0
• Uses same

Signing Block
• Introduces Key

Rotation

V4
• Android v11.0
• Signature separate

than APK
• Always needs to

have v2 or v3

10

V1 Signing Scheme
Also known as Jar Signing Scheme

AP
K

AndroidManifest.xml

assets

META-INF CERT.SF Contains the sha1-digest for
MANIFEST.SF

CERT.RSA / DSA Contents the Public Certificate and the
Signing Signature

MANIFEST.MF

Contains the sha1-digest of each of the files
in the zip.

res

resources.arsc

classes.dex

11

V1 Problems – Skipped Files

• The JAR signing scheme skips files in META-INF

• APKs loading files from META-INF might get replaced.

• Most APK has v2 or newer schemes, so not so dangerous but some does
still have v1 only and has files in META-INF.

12

V1 Problems – Skipped Files – Add Extra Files

Unzip

Inside META-INF folder

File /Data

Unzipped
APK

Signature
Preserved APK

V1 Signed
APK

13

V1 Problems – CVE-2013-4787 – “Master Key Vuln”

If there are 2 files with the same name.

The Android Runtime runs the first and ignore the second.

FILE 1

FILE 2

FILE 3

FILE 4

FILE 4

14

V1 Problems – JANUS Vulnerability

• CVE-2017–13156. Affects Android 5.0 < 8.1

• DEX prepended to a valid, signed APK file bypasses verification
since those bytes are ignored in v1.

• ART which can load both DEX and APK, loads the malicious
prepended DEX.

• Makes malicious DEX acceptable as an update to
existing privileged apps like system apps.

DEX

APK

DEX File

On top of

Valid APK File

15

V2 Signing Scheme

source.android.com/docs/security/features/apksigning/v2

16

V2 / V3 Signing Scheme

Contents of
the ZIP
entries

Central
Directory

End of
Central

Directory
Before Signing

17

V2 / V3 Signing Scheme

Contents of
the ZIP
entries

Central
Directory

End of
Central

Directory

Contents of
the ZIP
entries

APK Signing
Block

Central
Directory

End of
Central

Directory

Before Signing

After Signing

18

Other Blocks

Length LengthID Value ID Value ID Value Magic

V2 Signing Block APK Sig Block 42

Same Length Value

APK Signing Block

19

Digests - SHA256 of the APK chunks

Public key certs - Key used to sign the digest

Signature - Signature after signing the digest

V2 Block ID:0x7109871a

20

V3 Block ID: 0xf05368c0

source.android.com/docs/security/features/apksigning/v3

21

Verity Padding Block ID:0x42726577

Used to increase the size of the Signing block (including the length and magic) to a multiple 4096.

22

Verity Padding Block ID:0x42726577

Used to increase the size of the Signing block (including the length and magic) to a multiple 4096.

23

Source Stamp Block ID:0x6dff800d

Includes metadata such as timestamp of the build, the version of the build tools, source code's git
commit hash etc.

Basically: Version Control information.

24

Source Stamp Block ID:0x6dff800d

Includes metadata such as timestamp of the build, the version of the build tools, source code's git
commit hash etc.

Basically: Version Control information.

 The source stamp is stored in a file called stamp-cert-sha256, present in the APK.

This is matched with the digest from the SOURCE_STAMP_BLOCK

25

Google Play Frosting ID:0x2146444e

Introduced in 2018 – to prove that an APK
originated from the Play Store.
Protobuff encoded and signed with
Google’s private key to prove authenticity.

26

Google Play Frosting ID:0x2146444e

github.com/avast/apkverifier

https://github.com/avast/apkverifier

27

Google Play Frosting ID:0x2146444e

28

Google Play Frosting ID:0x2146444e

There is a SHA256 Signature so we cant
just put this on random APKs.

29

Dependency Info Block ID:0x504b4453

Block that contains dependency
metadata, which is saved by the
Android Gradle plugin to identify
any issues related to dependencies.

We Can Change this:

- but not much malicious use case
here ?

Stripping it:
- will not allow Play Console to
Analyze it.

developer.android.com/build/releases/past-releases/agp-4-0-0-release-notes#dependency-metadata

30

Zero Block ID:0xff3b5998

Value is always \x00 * 4084

We only found this on Facebook / Instagram APKs.

31

Zero Block ID:0xff3b5998

Value is always \x00 * 4084

We only found this on Facebook / Instagram APKs.

32

APK Channel Block ID:0x71777777

Used to track channels of distribution for an APK, mostly Chinese APKs have this.

Can be added to any app through this framework called walle
https://github.com/Meituan-Dianping/walle

Channel specific information in key-value pairs, which is not encrypted.

 You are most welcomed to change it J

https://github.com/Meituan-Dianping/walle

33

Demo 1

Showcase how modifying the APK Signing Block still
retain the verification status.

34

Cool, do APKs have these ‘other’
blocks ?

35

Block Usage Survey
VE

R
IT

Y_
PA

D
DI

N
G

_B
LO

C
K

SO
U

R
CE

_S
TA

M
P_

BL
O

CK

G
O

O
G

LE
_P

LA
Y_

M
ET

AD
AT

A

D
EP

EN
D

EN
CY

_I
N

FO
_B

LO
C

K_
ID ZE

R
O

_B
LO

C
K

AP
K_

CH
AN

NE
L_

BL
O

C
K_

ID

Play Store APKs

VE
R

IT
Y_

PA
D

DI
N

G
_B

LO
C

K

SO
U

R
CE

_S
TA

M
P_

BL
O

CK

G
O

O
G

LE
_P

LA
Y_

M
ET

AD
AT

A

D
EP

EN
D

EN
CY

_I
N

FO
_B

LO
C

K_
ID ZE

R
O

_B
LO

C
K

AP
K_

CH
AN

NE
L_

BL
O

C
K_

ID

Malware APKs

36

0%

3%
0%

24%

73%

APKs From Play Store
Only V1 Only V2 Only V3 V1 and V2 V1 V2 and V3

51%

1%0%

24%

24%

Malware APKs
Only V1 Only V2 Only V3 V1 and V2 V1 V2 and V3

Exclusive Signing Version Distribution

37

Initially we thought that it depends upon the existing size of the APK Signing Blocks, and the
type and number of other blocks present ?

How much can we change / modify ?

38

Initially we thought that it depends upon the existing size of the APK Signing Blocks, and the
type and number of other blocks present ?

How much can we change / modify ?

39

Initially we thought that it depends upon the existing size of the APK Signing Blocks, and the
type and number of other blocks present ?

How much can we change / modify ?

Needs to be 4K padded, if Verity

40

Use Cases
1. Good Use Case – Version Tracking ; Metadata in APK.
2. Malware Evasions – Embedding good in the Bad.
3. Covert Communications – Embedding Bad in the Good.
4. Code BOMBS - Embedding and reading from other apps

41

Use Case 0: Good

1. Version Tracking
2. Frosting
3. Custom Use Cases ?

42

Use Case 1: Malware Evasions without Repackaging

Steps:
1. Take A Malicious APK.
2. Morph it by adding / changing the APK Signing blocks.
3. The detection rates goes down.

Malware

New data

43

Use Case 1: Malware Evasions without Repackaging

Steps:
1. Take A Malicious APK.
2. Morph it by adding / changing the APK Signing blocks.
3. The detection rates goes down.

Malware

New data

ML poison data

Prompt Injections ?

44

Use Case 1: Malware Evasions without Repackaging

Steps:
1. Take A Malicious APK.
2. Morph it by adding / changing the APK Signing blocks.
3. The detection rates goes down.

 Mostly the hash-based lookup fails, since the hash of the file has changed!

45

Use Case 1: Malware Evasions without Repackaging

PEGASUS
PARENT

46

Use Case 1: Malware Evasions without Repackaging

PEGASUS
PARENT

VERITY
MODIFIED

47

Use Case 1: Malware Evasions without Repackaging

PEGASUS
PARENT

VERITY
MODIFIED

BLOATED
APK

48

Use Case 2: Embedding Malicious content inside APK

Steps:
1. Take A Good Signed and Verified APK.
2. Morph it by adding / changing the APK Signing blocks.
3. Added malicious content is not scanned J

Good APK
Malicious

data

49

Use Case 2: Embedding Malicious content inside APK

Original Malicious Content

RedLine Stealer

50

Use Case 2: Embedding Malicious content inside APK

Original Malicious Content

Same Content embedded inside APK Resources

51

Use Case 2: Embedding Malicious content inside APK

Original Malicious Content

Same Binary Blob embedded inside APK Signing
Block

52

Use Case 3 : Embedding Code Bombs inside APK

Steps:
1. Take A Good Signed and Verified APK.
2. Add messages / content as part of the Signing blocks.
3. Added content is not scanned J

4. It stays on the device forever, waiting to be ignited by any other apps.

Good APK
Malicious

data

Dormant APK

reads

53

Use Case 3 : Embedding Code Bombs inside APK

• In all android versions, one App can read another APK file

• But getting the path to the APK file is a bit tricky

• It can be fetched by running pm path package_name but only can be done till Android 10

54

Demo 2

Code BOMB detonations

55

56

Can we Fuzz the APK Signing Block ?
Java Heap Memory exhaustion error in
the apksigner - DOS

Caused as apksigner assigns array
memory without any checks, ex : new
byte[(int) cdRecord.getUncompressedSize()]

57

Take-A-Ways Attackers

APK signing blocks can be used to embedded stuffs to change the binary without impacting the
signed or the signing schemes.

 Use this to either embed malicious stuffs or c2 communications.

58

Take-A-Ways Attackers

APK signing blocks can be used to embedded stuffs to change the binary without impacting the
signed or the signing schemes.

 Use this to either embed malicious stuffs or c2 communications.

Take-A-Ways Defenders

Start scanning for these APK Signing blocks irrespective of
- the APK Verification status

- or Repackaging Detections.

Thank you

Reach out:
Ayan – saha.ayan1996 [at] gmail.com
Achute – achute.sharma [at] keysight.com

