
Reverse Engineering RGB
Keyboard Backlights

Press Space for next page

Rishit Bansal

https://github.com/slidevjs/slidev

👤 Hi, I’m Rishit
Bansal!

From Bangalore, India

Software Developer @ Dyte (https://dyte.io)

I play CTFs with csictf, dytesec

2nd time at Nullcon, participant last year

Placed 1st along with dytesec at hardware

CTF

https://www.linkedin.com/in/bansal-rishit/

https://dyte.io/
https://www.linkedin.com/in/bansal-rishit/

🎯 What will we cover in this talk?
Chapter 1: Reverse Engineer a Windows Service which interacts with keyboard backlight �rmware

Chapter 2: Understand the system protocols involved in interacting with device �rmware

Chapter 3: Re-implement the same functionality on the Linux Kernel

Bonus: Discover new functionality possible in hardware!

Chapter 1
Reverse Engineering the HP Light Studio Application

The Laptop
Laptop: HP Omen 15

Four zones of con�gurable backlights

Can set colors at a really fast rate to

simulate animations.

Hardware Key to toggle the backlight on and

off.

HP Omen Light Studio Application

Windows Desktop Application

Allows you to choose between

template/custom animations

Closed source, 0 documentation

Animations only work when Windows

boots, otherwise just static colors

Where is the service?

Omen Gaming Hub on Task Manager
C:\Program

Files\WindowsApps\AD2F1837.OMENLightStudio_1.0.37.0_x64__v10z8vjag6ke6

Light Studio Service on Task Manager
C:\Program Files\HP\LightStudioHelper

Decompiling the Executable and DLL Files
(Ilspy Demo)

6 ManagementObject val = new ManagementObject(

7 "root\\wmi", "hpqBIntM.InstanceName='ACPI\\PNP0C14\\0_0'", (ObjectGetOptions)null

8);

12 ((ManagementBaseObject)val2).set_Item("Sign", (object)Sign);

13 ((ManagementBaseObject)val2).set_Item("Command", (object)command);

14 ((ManagementBaseObject)val2).set_Item("CommandType", (object)commandType);

15 ((ManagementBaseObject)val2).set_Item("Size", (object)inputDataSize);

16 ((ManagementBaseObject)val2).set_Item("hpqBData", (object)inputData);

1 private static int Execute(int command, int commandType, int inputDataSize, byte[] inputData, out byte[] returnData)

2 {

3 returnData = new byte[0];

4 try

5 {

9 ManagementObject val2 = (ManagementObject)new ManagementClass("root\\wmi:hpqBDataIn");

10 ManagementBaseObject methodParameters = val.GetMethodParameters("hpqBIOSInt128");

11 ManagementBaseObject val3 = (ManagementBaseObject)new ManagementClass("root\\wmi:hpqBDataOut128");

17 methodParameters.set_Item("InData", (object)val2);

18 InvokeMethodOptions val4 = new InvokeMethodOptions();

19 ((ManagementOptions)val4).set_Timeout(TimeSpan.MaxValue);

20 InvokeMethodOptions val5 = val4;

21 object obj = val.InvokeMethod("hpqBIOSInt128", methodParameters, val5).get_Item("OutData");

22 val3 = (ManagementBaseObject)((obj is ManagementBaseObject) ? obj : null);

23 returnData = val3.get_Item("Data") as byte[];

24 return Convert.ToInt32(val3.get_Item("rwReturnCode"));

25 }

26 catch (Exception ex)

27 {

28 Console.WriteLine("OMEN Four zone lighting - WmiCommand.Execute occurs exception: " + ex);

Chapter 1 Summary
Used ILSpy to decompile a .NET Windows Service, identi�ed how the Light Studio Helper Service Works

Mysterious References to other protocols and Windows APIs

Windows C# API: ManagementObject

References to root\\wmi

ACPI\\PNP0C14\\0_0

"Command" parameter is passed 131081

Type 1 : Checks if lighting is supported

Type 2 : Getting the colors of each zone on the keyboard

Type 3 : Setting the colors of each zone on the keyboard

Type 4 : Checks if backlight is on or off

Type 5 : Sets brightness for each of the 4 zones

` `

` `

` `

` `

` `

` `

` `

` `

` `

Chapter 2: Understanding ACPI and WMI

History of I/O device interop

On the 8086, I/O devices sent interrupts are sent by:

Sending a pulse on INTR pin

Receives interrupt vector on Data pins, and jumps to

interrupt execution

Disadvantages:

No standardization on interrupt numbers, vectors

I/O Device API handlers were hardcoded in Bios Firmware

OS/Kernel space software has no direct I/O accees,

functionality hardcoded in Bios

Needed in modern systems (read temp sensors, power

management, etc.)

` `

ACPI (Advanced Con�guration and Power Interface)
Introduced to move I/O API interfaces out of �rmware to operating system

A new language to write I/O related code

AML (ACPI Machine Language Bytecode)

Interpreted and executed on the operating system!

ASL code is stored in �rmware on "ACPI tables"

Loaded into main memory during boot time for OS access

ACPI Architecture

Reading/Decompiling AML code on Linux
AML Code is loaded into main memory on boot by �rmware

Linux ACPI Driver mounts this at /sys/firmware/acpi/tables/DSDT

iasl -d <dsdt_dump> CLI tool can be used to decompile AML bytecode

` `

` `

3 Device (ACAD)

5 Name (_HID, "ACPI0003" /* Power Source Device */) // _HID: Hardware ID

13 Method (_STA, 0, NotSerialized) // _STA: Status

14 {

15 Return (0x0F)

16 }

1 Scope (_SB)

2 {

4 {

6 Name (_PCL, Package (0x01) // _PCL: Power Consumer List

7 {

8 _SB

9 })

10 Name (XX00, Buffer (0x03) {})

11 Name (ACSB, One)

12 Name (ACDC, 0xFF)

17 ...

WMI (Windows Management Instrumentation)
A protocol to help sysadmins manage distributed network of windows machines.

Execute management scripts/retreieve information from machines.

Runs a simple server which accepts requests from clients, and executes them on "WMI Providers"

Providers expose classes and methods, each class has a unique "GUID"

Simply put, just a way to do RPC between applications on windows machines.

WMI Explorer

How it all links together: WMI-ACPI!
Microsoft’s proprietary extenstion to the ACPI speci�cation

Allows you to expose ACPI Methods, as WMI Methods on Windows.

Developer must create a custom ACPI device with ID PNP0C14 in AML.

Must have a �eld called _WDG

_WDG stores metadata for links between WMI Class GUIDs and ACPI Functions (Wmxx)

` `

` `

` `

Device (WMID)

 {

 Name (_HID, "PNP0C14" /* Windows Management Instrumentation Device */) // _HID: Hardware ID

 Name (_WDG, Buffer (0x0118)

 {

 /* 0000 */ 0x34, 0xF0, 0xB7, 0x5F, 0x63, 0x2C, 0xE9, 0x45, // 4.._c,.E

 /* 0008 */ 0xBE, 0x91, 0x3D, 0x44, 0xE2, 0xC7, 0x07, 0xE4, // ..=D....

 /* 0010 */ 0x41, 0x41, 0x01, 0x02, 0x79, 0x42, 0xF2, 0x95, // AA..yB..

 /* 0018 */ 0x7B, 0x4D, 0x34, 0x43, 0x93, 0x87, 0xAC, 0xCD, // {M4C....

 /* 0020 */ 0xC6, 0x7E, 0xF6, 0x1C, 0x80, 0x00, 0x01, 0x08, // .~......

Using wmidump to read WDG buffers
$ wmidump < file_with_wdg_buffer

Extracts out the WMI method GUIDs and ACPI function mappings

- WMAA Method in AML Code:

` `

5FB7F034-2C63-45E9-BE91-3D44E2C707E4:

object_id: AA

instance_count: 1

flags: 0x2 ACPI_WMI_METHOD

95F24279-4D7B-4334-9387-ACCDC67EF61C:

notify_id: 0x80

instance_count: 1

flags: 0x8 ACPI_WMI_EVENT

....

Method (WMAA, 3, Serialized)

{

 Acquire (MUTZ, 0xFFFF)

 Local0 = HWMC (Arg1, Arg2)

 Release (MUTZ)

 Return (Local0)

}

WMI-ACPI Flow for Omen Light Studio Application

Chapter 2 Summary
Learned about the innter workings of two protocols, ACPI and WMI.

ACPI speci�es "AML" code loaded from BIOS into main memory.

OS (Eg: Linux) can read and execute this to interact with I/O devices.

WMI provides a way for user-space communication between services on Windows.

WMI-ACPI exposes ACPI methods as WMI Methods

Plan: Implement a kernel driver to interface WMI/ACPI on Linux!

Chapter 3: Developing WMI Drivers on the Linux
Kernel

acpi.h in the Linux Kernel
Implementation of the ACPI speci�cation / AML interpretor

acpi_boot_init() is called on boot to parse AML from ACPI tables in system-memory

Provides helper functions to invoke WMI-ACPI methods using their GUID directly from a kernel driver:

` `

extern acpi_status wmi_evaluate_method(const char *guid, u8 instance,

u32 method_id,

const struct acpi_buffer *in,

struct acpi_buffer *out);

Interfacing kernel APIs from userspace
sysfs allows you to create custom �les in the /sys/ to represent device driver APIs

You can write/read to these �les from userspace, to trigger handlers in the kernel

In our case, /sys/class/leds is most relevant to represent the keyboard backlight device

Has special handlers we have to implement for brightness control

Added a custom �le called zone_colors to represent the RGB backlights

` `

` `

static DEVICE_ATTR_RW(zone_colors);

static struct attribute *omen_kbd_led_attrs[] = {

&dev_attr_zone_colors.attr,

NULL,

};

ATTRIBUTE_GROUPS(omen_kbd_led);

static struct led_classdev omen_kbd_led = {

.name = "hp_omen::kbd_backlight",

.brightness_set = set_omen_backlight_brightness,

.brightness_get = get_omen_backlight_brightness,

.max_brightness = 1,

.groups = omen_kbd_led_groups,

};

What the new device driver �le tree looks like

- We need to write handlers to read/write `brightness` and `zone_colors`

rishit@OMEN-laptop:~/Documents/kernels/staging$ ls /sys/class/leds/hp_omen\:\:kbd_backlight/

brightness max_brightness subsystem uevent

device power trigger zone_colors

#define HPWMI_READ_ZONE 0x02

#define HPWMI_WRITE_ZONE 0x03

#define OMEN_ZONE_COLOR_LEN 0x0c // 12 bytes (3 components (R,G,B) * 4 zones)

#define OMEN_ZONE_COLOR_OFFSET 0x19 // 25

#define HPWMI_KB 0x20009 // 131081

static ssize_t zone_colors_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)

{

u8 val[128];

int ret;

ret = hp_wmi_perform_query(HPWMI_READ_ZONE, HPWMI_KB, &val, zero_if_sup(val), sizeof(val));

if (ret)

return ret;

if (count != OMEN_ZONE_COLOR_LEN)

return -1;

memcpy(&val[OMEN_ZONE_COLOR_OFFSET], buf, count);

ret = hp_wmi_perform_query(HPWMI_WRITE_ZONE, HPWMI_KB, &val, sizeof(val), 0);

if (ret)

return ret;

return OMEN_ZONE_COLOR_LEN;

}

Handlers for brightness control

Bonus: Even though this LED only supports ON and OFF state, we can simulate brightness using a trick

We can use the previous zone_colors_store/read methods and "scale" the RGB components by the

brightness multipler

#define HPWMI_WRITE_BRIGHTNESS 0x05

#define HPWMI_KB 0x20009 // 131081

static void set_omen_backlight_brightness(struct led_classdev *cdev, enum led_brightness value)

{

char buffer[4] = { (value == LED_OFF) ? 0x64 : 0xe4, 0, 0, 0 };

hp_wmi_perform_query(HPWMI_WRITE_BRIGHTNESS, HPWMI_KB, &buffer,

 sizeof(buffer), 0);

}

R (zone) =eff R(zone) ∗ (brightness/100)

Demo

Thank you!

Questions?

