
Reverse Engineering RGB
Keyboard Backlights

Press Space for next page

Rishit Bansal

https://github.com/slidevjs/slidev

👤 Hi, I’m Rishit
Bansal!

From Bangalore, India

Software Developer @ Dyte (https://dyte.io)

I play CTFs with csictf, dytesec

2nd time at Nullcon, participant last year

Placed 1st along with dytesec at hardware

CTF

https://www.linkedin.com/in/bansal-rishit/

https://dyte.io/
https://www.linkedin.com/in/bansal-rishit/

🎯 What will we cover in this talk?
Chapter 1: Reverse Engineer a Windows Service which interacts with keyboard backlight firmware

Chapter 2: Understand the system protocols involved in interacting with device firmware

Chapter 3: Re-implement the same functionality on the Linux Kernel

Bonus: Discover new functionality possible in hardware!

Chapter 1
Reverse Engineering the HP Light Studio Application

The Laptop
Laptop: HP Omen 15

Four zones of configurable backlights

Can set colors at a really fast rate to

simulate animations.

Hardware Key to toggle the backlight on and

off.

HP Omen Light Studio Application

Windows Desktop Application

Allows you to choose between

template/custom animations

Closed source, 0 documentation

Animations only work when Windows

boots, otherwise just static colors

Where is the service?

Omen Gaming Hub on Task Manager
C:\Program

Files\WindowsApps\AD2F1837.OMENLightStudio_1.0.37.0_x64__v10z8vjag6ke6

Light Studio Service on Task Manager
C:\Program Files\HP\LightStudioHelper

Decompiling the Executable and DLL Files
(Ilspy Demo)

6 ManagementObject val = new ManagementObject(

7 "root\\wmi", "hpqBIntM.InstanceName='ACPI\\PNP0C14\\0_0'", (ObjectGetOptions)null

8);

12 ((ManagementBaseObject)val2).set_Item("Sign", (object)Sign);

13 ((ManagementBaseObject)val2).set_Item("Command", (object)command);

14 ((ManagementBaseObject)val2).set_Item("CommandType", (object)commandType);

15 ((ManagementBaseObject)val2).set_Item("Size", (object)inputDataSize);

16 ((ManagementBaseObject)val2).set_Item("hpqBData", (object)inputData);

1 private static int Execute(int command, int commandType, int inputDataSize, byte[] inputData, out byte[] returnData)

2 {

3 returnData = new byte[0];

4 try

5 {

9 ManagementObject val2 = (ManagementObject)new ManagementClass("root\\wmi:hpqBDataIn");

10 ManagementBaseObject methodParameters = val.GetMethodParameters("hpqBIOSInt128");

11 ManagementBaseObject val3 = (ManagementBaseObject)new ManagementClass("root\\wmi:hpqBDataOut128");

17 methodParameters.set_Item("InData", (object)val2);

18 InvokeMethodOptions val4 = new InvokeMethodOptions();

19 ((ManagementOptions)val4).set_Timeout(TimeSpan.MaxValue);

20 InvokeMethodOptions val5 = val4;

21 object obj = val.InvokeMethod("hpqBIOSInt128", methodParameters, val5).get_Item("OutData");

22 val3 = (ManagementBaseObject)((obj is ManagementBaseObject) ? obj : null);

23 returnData = val3.get_Item("Data") as byte[];

24 return Convert.ToInt32(val3.get_Item("rwReturnCode"));

25 }

26 catch (Exception ex)

27 {

28 Console.WriteLine("OMEN Four zone lighting - WmiCommand.Execute occurs exception: " + ex);

Chapter 1 Summary
Used ILSpy to decompile a .NET Windows Service, identified how the Light Studio Helper Service Works

Mysterious References to other protocols and Windows APIs

Windows C# API: ManagementObject

References to root\\wmi

ACPI\\PNP0C14\\0_0

"Command" parameter is passed 131081

Type 1 : Checks if lighting is supported

Type 2 : Getting the colors of each zone on the keyboard

Type 3 : Setting the colors of each zone on the keyboard

Type 4 : Checks if backlight is on or off

Type 5 : Sets brightness for each of the 4 zones

` `

` `

` `

` `

` `

` `

` `

` `

` `

Chapter 2: Understanding ACPI and WMI

History of I/O device interop

On the 8086, I/O devices sent interrupts are sent by:

Sending a pulse on INTR pin

Receives interrupt vector on Data pins, and jumps to

interrupt execution

Disadvantages:

No standardization on interrupt numbers, vectors

I/O Device API handlers were hardcoded in Bios Firmware

OS/Kernel space software has no direct I/O accees,

functionality hardcoded in Bios

Needed in modern systems (read temp sensors, power

management, etc.)

` `

ACPI (Advanced Configuration and Power Interface)
Introduced to move I/O API interfaces out of firmware to operating system

A new language to write I/O related code

AML (ACPI Machine Language Bytecode)

Interpreted and executed on the operating system!

ASL code is stored in firmware on "ACPI tables"

Loaded into main memory during boot time for OS access

ACPI Architecture

Reading/Decompiling AML code on Linux
AML Code is loaded into main memory on boot by firmware

Linux ACPI Driver mounts this at /sys/firmware/acpi/tables/DSDT

iasl -d <dsdt_dump> CLI tool can be used to decompile AML bytecode

` `

` `

3 Device (ACAD)

5 Name (_HID, "ACPI0003" /* Power Source Device */) // _HID: Hardware ID

13 Method (_STA, 0, NotSerialized) // _STA: Status

14 {

15 Return (0x0F)

16 }

1 Scope (_SB)

2 {

4 {

6 Name (_PCL, Package (0x01) // _PCL: Power Consumer List

7 {

8 _SB

9 })

10 Name (XX00, Buffer (0x03) {})

11 Name (ACSB, One)

12 Name (ACDC, 0xFF)

17 ...

WMI (Windows Management Instrumentation)
A protocol to help sysadmins manage distributed network of windows machines.

Execute management scripts/retreieve information from machines.

Runs a simple server which accepts requests from clients, and executes them on "WMI Providers"

Providers expose classes and methods, each class has a unique "GUID"

Simply put, just a way to do RPC between applications on windows machines.

WMI Explorer

How it all links together: WMI-ACPI!
Microsoft’s proprietary extenstion to the ACPI specification

Allows you to expose ACPI Methods, as WMI Methods on Windows.

Developer must create a custom ACPI device with ID PNP0C14 in AML.

Must have a field called _WDG

_WDG stores metadata for links between WMI Class GUIDs and ACPI Functions (Wmxx)

` `

` `

` `

Device (WMID)

 {

 Name (_HID, "PNP0C14" /* Windows Management Instrumentation Device */) // _HID: Hardware ID

 Name (_WDG, Buffer (0x0118)

 {

 /* 0000 */ 0x34, 0xF0, 0xB7, 0x5F, 0x63, 0x2C, 0xE9, 0x45, // 4.._c,.E

 /* 0008 */ 0xBE, 0x91, 0x3D, 0x44, 0xE2, 0xC7, 0x07, 0xE4, // ..=D....

 /* 0010 */ 0x41, 0x41, 0x01, 0x02, 0x79, 0x42, 0xF2, 0x95, // AA..yB..

 /* 0018 */ 0x7B, 0x4D, 0x34, 0x43, 0x93, 0x87, 0xAC, 0xCD, // {M4C....

 /* 0020 */ 0xC6, 0x7E, 0xF6, 0x1C, 0x80, 0x00, 0x01, 0x08, // .~......

Using wmidump to read WDG buffers
$ wmidump < file_with_wdg_buffer

Extracts out the WMI method GUIDs and ACPI function mappings

- WMAA Method in AML Code:

` `

5FB7F034-2C63-45E9-BE91-3D44E2C707E4:

object_id: AA

instance_count: 1

flags: 0x2 ACPI_WMI_METHOD

95F24279-4D7B-4334-9387-ACCDC67EF61C:

notify_id: 0x80

instance_count: 1

flags: 0x8 ACPI_WMI_EVENT

....

Method (WMAA, 3, Serialized)

{

 Acquire (MUTZ, 0xFFFF)

 Local0 = HWMC (Arg1, Arg2)

 Release (MUTZ)

 Return (Local0)

}

WMI-ACPI Flow for Omen Light Studio Application

Chapter 2 Summary
Learned about the innter workings of two protocols, ACPI and WMI.

ACPI specifies "AML" code loaded from BIOS into main memory.

OS (Eg: Linux) can read and execute this to interact with I/O devices.

WMI provides a way for user-space communication between services on Windows.

WMI-ACPI exposes ACPI methods as WMI Methods

Plan: Implement a kernel driver to interface WMI/ACPI on Linux!

Chapter 3: Developing WMI Drivers on the Linux
Kernel

acpi.h in the Linux Kernel
Implementation of the ACPI specification / AML interpretor

acpi_boot_init() is called on boot to parse AML from ACPI tables in system-memory

Provides helper functions to invoke WMI-ACPI methods using their GUID directly from a kernel driver:

` `

extern acpi_status wmi_evaluate_method(const char *guid, u8 instance,

u32 method_id,

const struct acpi_buffer *in,

struct acpi_buffer *out);

Interfacing kernel APIs from userspace
sysfs allows you to create custom files in the /sys/ to represent device driver APIs

You can write/read to these files from userspace, to trigger handlers in the kernel

In our case, /sys/class/leds is most relevant to represent the keyboard backlight device

Has special handlers we have to implement for brightness control

Added a custom file called zone_colors to represent the RGB backlights

` `

` `

static DEVICE_ATTR_RW(zone_colors);

static struct attribute *omen_kbd_led_attrs[] = {

&dev_attr_zone_colors.attr,

NULL,

};

ATTRIBUTE_GROUPS(omen_kbd_led);

static struct led_classdev omen_kbd_led = {

.name = "hp_omen::kbd_backlight",

.brightness_set = set_omen_backlight_brightness,

.brightness_get = get_omen_backlight_brightness,

.max_brightness = 1,

.groups = omen_kbd_led_groups,

};

What the new device driver file tree looks like

- We need to write handlers to read/write `brightness` and `zone_colors`

rishit@OMEN-laptop:~/Documents/kernels/staging$ ls /sys/class/leds/hp_omen\:\:kbd_backlight/

brightness max_brightness subsystem uevent

device power trigger zone_colors

#define HPWMI_READ_ZONE 0x02

#define HPWMI_WRITE_ZONE 0x03

#define OMEN_ZONE_COLOR_LEN 0x0c // 12 bytes (3 components (R,G,B) * 4 zones)

#define OMEN_ZONE_COLOR_OFFSET 0x19 // 25

#define HPWMI_KB 0x20009 // 131081

static ssize_t zone_colors_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)

{

u8 val[128];

int ret;

ret = hp_wmi_perform_query(HPWMI_READ_ZONE, HPWMI_KB, &val, zero_if_sup(val), sizeof(val));

if (ret)

return ret;

if (count != OMEN_ZONE_COLOR_LEN)

return -1;

memcpy(&val[OMEN_ZONE_COLOR_OFFSET], buf, count);

ret = hp_wmi_perform_query(HPWMI_WRITE_ZONE, HPWMI_KB, &val, sizeof(val), 0);

if (ret)

return ret;

return OMEN_ZONE_COLOR_LEN;

}

Handlers for brightness control

Bonus: Even though this LED only supports ON and OFF state, we can simulate brightness using a trick

We can use the previous zone_colors_store/read methods and "scale" the RGB components by the

brightness multipler

#define HPWMI_WRITE_BRIGHTNESS 0x05

#define HPWMI_KB 0x20009 // 131081

static void set_omen_backlight_brightness(struct led_classdev *cdev, enum led_brightness value)

{

char buffer[4] = { (value == LED_OFF) ? 0x64 : 0xe4, 0, 0, 0 };

hp_wmi_perform_query(HPWMI_WRITE_BRIGHTNESS, HPWMI_KB, &buffer,

 sizeof(buffer), 0);

}

R ​(zone) =eff R(zone) ∗ (brightness/100)

Demo

Thank you!

Questions?

