
Secure Coding: Fix From The Root

About me

- Product security Engineer
- wisdomfreak1
- Bug bounty Hunter
- Traveler

As a Developer

1. Understand Requirements
a. Understanding the project requirements, including functional

specifications.
2. Plan and design

a. outlining the overall structure, database schema, and
technology stack to be used.

3. Code Development
a. Write clean, efficient, and maintainable code following coding

standards and best practices.
4. Testing and Quality Assurance

a. Develop and execute comprehensive testing strategies, including
unit tests.

But what about Security?

A Scenario

“Rahul bought a 1 year car insurance
from Icici Lombard at 20000 Rs”

Breaking the assumptions

“Break Each and Every assumption made by
the system.”

The assumptions

1. Rahul pays “Rs. 20000” for the insurance
2. Rahul pays for “ICICI Lombard” car insurance
3. “Rahul” pays the insurance
4. Rahul pays Rs 20000 for “one year” car insurance
5. Rahul pays Rs 20000 for a one year “Car insurance”

Bugs Found in past

1. Account takeover of any user
2. Buying Things for free
3. Bypass transaction fee
4. Buying products and get full refund (not fraud)
5. Making myself as an Owner of an org

Common Vulnerabilities & Fixes

1. SQL Injection - Use prepared statements or parameterized queries.
2. XSS - Encode user-generated content before rendering it to the page.
3. CSRF - Implement anti-CSRF tokens
4. IDOR - proper access controls and authorization checks for every request.
5. File upload - check magic bits, file extension, content type and so on …

In this talk will cover

1. Mass Assignment
2. Race Condition
3. State management
4. Insecure Direct Object Reference (IDOR)
5. Cross Site Scripting
6. Business logic Issues

a. Workflow based

Mass Assignment
Mass Assignment: Ruby on Rails, NodeJS

Autobinding: Spring MVC, ASP NET MVC
Object injection: PHP

Mass Assignment

In order to streamline the development process and enhance productivity, many
frameworks offer convenient mass-assignment functionality. This empowers
developers to efficiently inject a complete set of user-entered data from a form
directly into an object or database.

Example

1. form for editing a user's account
information

<form>
 <input name="userid" type="text">
 <input name="password" type="text">
 <input name="email" text="text">
 <input type="submit">
</form>

2. Object that the form is
binding to

public class User {
 private String userid;
 private String password;
 private String email;
 private boolean isAdmin;
}

3. Http Request

POST /update/
...
userid=nullcon&password=heker@786&email=nullcon@heker.com
&isAdmin=true

Case Study

1. Refund total amount for product
2. Changing role from Normal user to Owner

Refund total amount for product

Refund total amount for product

Changing role from User to Owner

Bug Fix

1. Only the fields that are meant to be editable by the user are included in the DTO

public class UserRegistrationFormDTO {
 private String userid;
 private String password;
 private String email;

 // isAdmin field is not present
}

Bug Fix

2. Language & Framework specific solutions
a. Allow-listing
b. Block-listing

Allow-listing

@Controller
public class UserController
{
 @InitBinder
 public void initBinder(WebDataBinder binder,
WebRequest request)
 {

binder.setAllowedFields(["userid","password","email"
]);
 }
...
}

Block-listing

@Controller
public class UserController
{
 @InitBinder
 public void initBinder(WebDataBinder
binder, WebRequest request)
 {

binder.setDisallowedFields(["isAdmin"]
);
 }
...
}

Race Condition

Race Condition

when the behaviour of a program becomes unpredictable due to the
timing of different threads or processes. It's like a "race" where
multiple threads compete to access and modify shared resources or
critical sections of code.

Race Condition

Example: In a scenario where the last seat (S1 - 12L) is available, both User
A and User B of IRCTC are concurrently attempting to book the
seat.

Due to a race condition, both users will be assigned the same
seat, resulting in a conflicting booking for S1 - 12L.

Case Study

1. Block user
2. Chaining of 2 bugs to get N amount

Credits: https://www.youtube.com/watch?v=tKJzsaB1ZvI&t=41s

https://www.youtube.com/watch?v=tKJzsaB1ZvI&t=41s

User Blocked

Happy Flow

While going through the community rules and regulation of the website i found
that a user will be block if someone reports more than 10 time temporary 2 hrs.
50 times for a day and if 100 time user will be blocked permanently.

The Bug

Bug Fix

1. Synchronization Mechanisms: Use synchronization mechanisms like locks to control
access to shared resources or critical sections of code

2. Atomic Operations
3. Implement message queues to decouple tasks and ensure that operations are

processed in a controlled and synchronized manner.
4. Transactional Databases: This ensures that either all operations in the transaction

succeed or none of them do, maintaining data consistency.

Cross Site Scripting
(XSS)

Xss

XSS is a client side attack in which the application executes arbitrary javascript code.
When an attacker successfully injects malicious scripts into a web page, the scripts
are executed by the victim's browser, which can eventually perform unauthorized
actions on behalf of victim, steal session cookies, etc.

Victim 1

Application

Malicious
Script

Script
Executes

Attacker gets sensitive information

The Bug

Happy flow

The application allows user to write community blogs which when approved the
moderator or admin community users can read it.

The Bug

Bug Fix

1. Encoding the User input
a. <script>alert(1)</script>
b. Example: <script>alert(1);</script>

2. Sanitation of user Input

Bug Fix

Example:

1. Browsers doing weird stuff
<07> test </07>

2. Lets add attribute foo=”bar”
<07 foo=”bar”>test</07>

3. what if add <h1> in attribute?
<07 foo=”bar <h1>”>test</07>

4. <07 foo=”bar <img/src=1 onerror=alert(1)>”>test</07>

1. Satanization of user Input

Note: to see how browser see it user document.body.innerHTML;
console.log(document.body.innerHTML)

Credits: https://www.youtube.com/watch?v=HUtkW2gjC8Q

https://www.youtube.com/watch?v=HUtkW2gjC8Q

Insecure Direct Object Reference (IDOR)

IDOR

Insecure Direct Object Reference is an access control vulnerability that
occurs when an internal object is exposed externally and is user controlled.

User Table:
User ID
Balance
Phone
Number
Email

Retrieves
unauthorized
Data of other

users

UserID (Internal
Object) Unauth-UserID

No
Validation

The Bug

Concept

Good Code/Bad code

@GET
 @Path("/v1/{userId}/info")
 public Response getUserinfo(@PathParam("userId") String
userId,@RequestContext RequestInfo requestInfo) {
 return fetchUserDetails(userId);
 }

@GET
@Path("/v1/info")
public Response getUserinfo(@RequestContext RequestInfo
requestInfo) {
 String xAuthId = requestInfo.getAuthId();
 return fetchUserDetails(xAuthId);
 }

Remediation

• As a golden rule, do not expose internal objects externally
• If had to be exposed, ensure the values are not guessable and Access

Control checks are in place when retrieving data

State management

State management

State management refers to the process of managing and maintaining the state
or data of an application or system throughout its lifecycle.

Application state management is the process of maintaining knowledge of an
application's inputs across multiple related data flows that form a complete
business transaction

Case Study
1. Updating cart will making payment
2. Updating Insurance plan while making payment

Updating cart will making payment

Updating Insurance plan while making payment

WorkFlow Based

The Bug

1. Transaction initiation phase was vulnerable.
2. Attackers gain access to the transaction process.
3. Within the transaction body, they identify the "Transaction charge"

parameter.
4. Attackers exploit this access to remove the "Transaction charge" api.
5. The removal effectively circumvents the associated convenience fee during

the payment.
6. This manipulation allows attackers to bypass paying the convenience fee,

potentially leading to unauthorized cost savings.

The Bug

Thank You

