The Convergence of eBPF,
Buildroot and QEMU for
Automated Linux

Malware Analysis

Nikhil Ashok Hegde
@ka1do9

whoami

> Senior Engineer at Netskope
> Security Research; Malware Analysis

> Gaming, Anime and Hiking!

This is my personal research, any views and opinions expressed are
my own, and not those of any employer

\ Agenda

. ELFEN
eBPF Buildroot Sandbox Q&A
Runtime Creating o
. . . Bringing It All
Beh Light ht
ehavior ightweig Together

Tracing Linux Images

extended Berkeley
Packet Filter (eBPF)

Runtime Behavior Tracing

\ What is eBPF?

Safely runs sandboxed programs in the kernel

> BPF first introduced in 1992. Later enhanced in 2014. Today,
BPF and eBPF terms are used interchangeably

> Variety of use-cases:
o network packet filtering
o performance troubleshooting
o |application behavior tracing|—" 7oday’s focus

eBPF Verifier and JIT Compiler

Process Process
i sendmsg() recvmsg()
Built into the Syscall
Linux kernel =
. vy
and verified o Cockets
for safet P oved
y _ e TCP/IP

Network Device

== Program
eBPF JIT Compiler

Source: ebpf.io

\ eBPF is Safe!

> Process must be privileged unless unprivileged BPF is enabled

> BPF program
o must definitely end
o cannot be arbitrarily large/complex
o cannot access arbitrary kernel memory directly

> BPF program is hardened

\ Probes and Tracing

> A probe is a location in the code where instrumentation can occur

Dynamic Instrumentation Static Instrumentation
kprobe/kretprobe Tracepoint
UPTobe/lTetpTone USDT (User-StgtlcaIIy Defined

Tracing)

\ Kprobes

Setu Register Make copy of Replace first byte
P kprobe probed instruction with breakpoint
register_kprobe
(struct kprobe *p)
Single-step
Acti Breakpoint Context Execute copy of Execute
ction ol saved pre-handler probed post-handler

instruction

Kprobes Structure

linux / include / linux / kprobes.h

Code Blame

struct kprobej {

ruct hlist_node hlist;

kprobes
list_head list;
nt the number of temp i d

rarily isarmed

unsigned long nmissed;

the probe point

kprobe_opcode_t *addr;

Al iser to in a

nst char *symbol_name;

. Declared in
into he <—

unsigned int offset;

7 include/linux/kprobes.h

kprobe_pre_handler_t pre_handler;

Called a addr exe C

kprobe_post_handler_t post_handler;

saved opcode (which has been replace

kprobe_opcode_t opcode;

the ori al ins

\ Kretprobes

Register kprobe registered
Setup kretprobe at entry of function
register_kretprobe
(struct kretprobe *rp)
kprobes
kprobe kprobes replaces kprobe
8 breakpoint —p» SaVes return . registered at Execute return ___
Action hit P return address with “trampoline” handler
address “trampoline” address
address

Set instruction pointer to
saved return address

Kretprobes Structure

linux / inclu / linux / kprobes.h

Code Blame

Declared in
include/linux/kprobes.h

_holder

\ Kprobes/Kretprobes Support

1386/x86-64

ppc/ppc64

arm

mips

ia64

s390

parisc

sparc64 (only kprobes)

VYYVYVVYYVYY

\ Tracepoints

> Predetermined hook points in kernel code

> More stable interface than kprobes/kretprobes

TRACE_EVENT (sched_Iprocess_exec, Name Of
-
TP_PROTO(sStruct task_struce—in. pid_t old_pid, traced event

struct linux_binprm *bprm),

TP_ARGS(p, old_pid, bprm),
subsystem
TP_STRUCT__entry(

__string(filename, bprm->filename

__field(pid_t, pid

_ field(pid_t, old_pid .
), Declared in

include/trace/events/sched.h

TP_fast_assign(

__assign_str(filename, bprm->filename);
__entry->pid = p->pid;
__entry->o0ld_pid = old_pid;

)r

TP_printk("filename=%s pid=%d old_pid=%d", _ get_str(filename),

__entry->pid, __entry->o0ld_pid)

\ Tracepoints
Called by bprm_execve() which is called

static int exec_binprm(struct linux_binprm *bprm)
by execve()

€
pid_t old_pid, old_vpid;
int ret, depth;

d
old_vpid k_pid_nr_ns(current, k_active_pid_ns(current->parent));
r d. k();

for (depth ;5 depth++) {
struct file *exec;
if (depth > 5)
return -ELOOP;

ret ch_binary_handler (bprm);
if (ret 0)

e «—— Tracepoint exists in fs/exec.c

exec = bprm->fil
bprm->file = bprm->interpreter;
bprm->interpreter = NULL;

allow_write cess(exec);
if (unlikely(bprm->have_execfd)) {
if (bprm->executable) {
fput(exec);
turn -ENOEXE
3

bprm->e table = exec;

fput(exec);

Actual tracepoint

_bprm(bprm) ;
sched_pr (current, old_pid, bprm);

\ eBPF Programming Front-ends

> Linux kernel requires eBPF bytecode for execution

> Popular front-ends to abstract away programming complexity:

o SysmonForLinux
(github.com/Sysinternals/SysmonForLinux)

o bpftrace (github.com/iovisor/bpftrace)

o bcc (github.com/iovisor/bcc)

o |p|y (github.com/wkz/ply)

Today’s MVP

Bulldroot

Creating Lightweight Linux Images

What is Bulldroot?

> Generate lightweight Linux images for various architectures
> Allows for granular customization of image

o Add kernel parameters

o Install required utilities

Link: buildroot.org

FLFEN Sandbox

Bringing it All Together

\ ELFEN Sandbox

> Dockerized Linux malware analysis sandbox
> Performs both static and dynamic analysis of Linux malware
> |Leverages eBPF for tracing, Buildroot for building sandbox

images

Link: github.com/nikhilh-20/ELFEN

\ ELFEN Architecture Support

> x86-64
> MIPS (32-bit, little/big-endian)
> PowerPC (32-bit, big-endian)

> ARMV5 (32-bit, little-endian)

\ ELFEN Tracer Choice: ply

> Lightweight eBPF-based dynamic tracer

o Only one runtime library dependency: libc

> Available to install in Buildroot

emo

Analysis with \

ELFEN

Future Work

> Community-driven detection content
> MITRE ATT&CK information in report
> Networking capability

> Support for more architectures

Questions?

ELFEN Sandbox: github.com/nikhilh-20/ELFEN

@kaldo9

[in] linkedin.com/in/nikhilh2/

