
The Convergence of eBPF, 
Buildroot and QEMU for

Automated Linux
Malware Analysis

Nikhil Ashok Hegde
@ka1do9



whoami

➢ Senior Engineer at Netskope

➢ Security Research; Malware Analysis

➢ Gaming, Anime and Hiking!

This is my personal research, any views and opinions expressed are 
my own, and not those of any employer



Agenda

eBPF

Runtime 
Behavior
Tracing

Buildroot

Creating 
Lightweight 

Linux Images

ELFEN
Sandbox

Bringing It All 
Together

Q&A



extended Berkeley 
Packet Filter (eBPF)

Runtime Behavior Tracing



What is eBPF?
➢ Safely runs sandboxed programs in the kernel

➢ BPF first introduced in 1992. Later enhanced in 2014. Today, 
BPF and eBPF terms are used interchangeably

➢ Variety of use-cases:
○ network packet filtering
○ performance troubleshooting
○ application behavior tracing Today’s focus



eBPF Verifier and JIT Compiler

Built into the
Linux kernel
and verified
for safety

Source: ebpf.io



eBPF is Safe!
➢ Process must be privileged unless unprivileged BPF is enabled

➢ BPF program
○ must definitely end
○ cannot be arbitrarily large/complex
○ cannot access arbitrary kernel memory directly

➢ BPF program is hardened



Probes and Tracing

➢ A probe is a location in the code where instrumentation can occur

Dynamic Instrumentation Static Instrumentation

kprobe/kretprobe Tracepoint

uprobe/uretprobe USDT (User-Statically Defined 
Tracing)



Kprobes

Register 
kprobe

Make copy of 
probed instruction

Replace first byte 
with breakpointSetup

Breakpoint 
hit

Context 
saved

Execute 
pre-handlerAction

Single-step
copy of 
probed 
instruction

Execute 
post-handler

register_kprobe
(struct kprobe *p)



Kprobes Structure

Declared in 
include/linux/kprobes.h



Kretprobes

Register 
kretprobe

kprobe registered 
at entry of functionSetup

kprobe 
breakpoint 
hit

kprobes 
saves 
return 
address

kprobes 
replaces 
return 
address with 
“trampoline” 
address

Action

kprobe 
registered at 
“trampoline” 
address

Execute return 
handler

Set instruction pointer to 
saved return address

register_kretprobe
(struct kretprobe *rp)



Kretprobes Structure

Declared in 
include/linux/kprobes.h



Kprobes/Kretprobes Support

➢ i386/x86-64
➢ ppc/ppc64
➢ arm
➢ mips
➢ ia64
➢ s390
➢ parisc
➢ sparc64 (only kprobes)



Tracepoints

➢ Predetermined hook points in kernel code

➢ More stable interface than kprobes/kretprobes



Tracepoints

Declared in
include/trace/events/sched.h

subsystem

Name of 
traced event 



Tracepoints
Called by bprm_execve() which is called 
by execve()

Actual tracepoint

Tracepoint exists in fs/exec.c



eBPF Programming Front-ends

➢ Linux kernel requires eBPF bytecode for execution

➢ Popular front-ends to abstract away programming complexity:

○ SysmonForLinux 
(github.com/Sysinternals/SysmonForLinux)

○ bpftrace (github.com/iovisor/bpftrace)
○ bcc (github.com/iovisor/bcc)
○ ply (github.com/wkz/ply) Today’s MVP



Buildroot

Creating Lightweight Linux Images



What is Buildroot?

➢ Generate lightweight Linux images for various architectures

➢ Allows for granular customization of image

○ Add kernel parameters

○ Install required utilities

Link: buildroot.org



ELFEN Sandbox

Bringing it All Together



ELFEN Sandbox

➢ Dockerized Linux malware analysis sandbox

➢ Performs both static and dynamic analysis of Linux malware

➢ Leverages eBPF for tracing, Buildroot for building sandbox 

images

Link: github.com/nikhilh-20/ELFEN



ELFEN Architecture Support

➢ x86-64

➢ MIPS (32-bit, little/big-endian)

➢ PowerPC (32-bit, big-endian)

➢ ARMv5 (32-bit, little-endian)



ELFEN Tracer Choice: ply

➢ Lightweight eBPF-based dynamic tracer

○ Only one runtime library dependency: libc

➢ Available to install in Buildroot



Demo

Analysis with 
ELFEN



Future Work

➢ Community-driven detection content

➢ MITRE ATT&CK information in report

➢ Networking capability

➢ Support for more architectures



Questions?

ELFEN Sandbox: github.com/nikhilh-20/ELFEN

@ka1do9

linkedin.com/in/nikhilh2/


